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In the general case, vibrational relaxation in a binary mixture of anharmonic oscilla- 
tors as a function of concentration is characterized as a complex interaction of energy ex- 
change processes: vibration-translation VT, vibration-vibration W, and vibration-~ibration 
between different types of molecules W'. Here it is impossible to separate the dominant 
process at a given time interval over the whole range of vibrational energy. As in the 
case of a single-component gas (see [1-3] for details), triple distributions are formed in 
each of the components at the lower vibrational levels as a result of a single-quantum \~ 
exchange. The relation between the distributions within the different components occurs 
through VV' processes. For relatively close fundamental vibration frequencies of the mix- 
ture components, the single-quantum process plays the main role in the W' processes. This 
case has often been studied, in particular in relation to its application to laser systems 
[2, 4-6]. In the more general case of two-quantum VV'-exchange processes, the relaxation of 
the average vibration energy, in the form of a distribution function in the quasistationary 
relaxation regime, has been examined in the weak anharmonic* approximation [3] (see also 
[2]) on the basis of previous results [7, 8]. This approach [2, 3, 7, 8] has been applied 
[9] to studying the effect of multiple (two) quantum VV' exchanges on the quantitative char- 
acteristics of the kinetic cooling effect in the process of vibrational relaxation in a 
binary mixture of molecular gases. 

Here we present the results of a numerical investigation of a transient kinetic vibra- 
tional relaxation in a binary mixture of diatomic molecules for arbitrary concentrations, 
initial vibration excitation levels, and ratios of the fundamental vibrational frequencies 

W= ~2)/~) (which implies discarding the approximation of weak anharmonicity and considers 

the processes of single-quantum energy exchange caused by the multimode character of the an- 
harmonic vibrations). Here the initial kinetic equations are the kinetic diffusion equa- 
tions in discrete quantum-number space [I0]. They are a generalization of the diffusion 
theory of vibrational relaxation for a binary mixture of diatomic molecules or quantum os- 
cillators. The results illustrate the effect of multiquantum vibrational exchange for com- 
ponents with significantly different vibrational frequencies for different concentrations 
and initial conditions. We also include a comparison, based on the example of a binary mix- 
ture of diatomic molecules, of microscopic (on the level of vibrational state population 
densities) and macroscopic (on the level of average energies) descriptions of vibrational 
relaxation, in order to determine the limits of applying the macroscopic description, which 
is widely used in complex multicomponent mixtures in combination with the gas dynamic de- 
scription (acoustic and shock waves, gas lasers of various types, etc.). 

i. Initial Equations and Initial Conditions. A system of finite-difference diffusion 
equations provides the initial kinetic equations for calculating the population density Xvi 

of the vibrational levels v i of the i-th component of a gas mixture: 

*In the calculations, the dependence of the rate constant on the degree of vibrational exci- 
tation of the oscillators is considered single-mode (quasiharmonic), but multiquantum transi- 
tions are caused by nonlinear terms in the expansion of the intermolecular potential. 
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d.~ v i 2 

= ~.d AJ~ dt ~ ,  i =  1,2, v i = 0 , 1 , 2  . . . .  ; ( 1 . 1 )  
j = l  

, 0 i j  

'Here Cv = Xv/Xv~ Xv~ = Xv(~) ;  and J(J)vi i s  t h e  f l u x  o f  m o l e c u l e s  o f  t y p e  i f rom t h e  v i b r a -  
t i o n a l  s t a t e  v i as  a r e s u l t  o f  c o l l i s i o n s  w i t h  m o l e c u l e s  o f  t y p e  j ,  and A and ~ '  a r e  f i r s t -  
o r d e r  f i n i t e  d i f f e r e n c e  o p e r a t o r s  

(AA~,,,, = A,,~, - -  Av-l,V,, A'A~,~, = A~,v, - -  Av,,,-O. 

The dynamic aspect of the problem is localized in the coefficients B(~)(vi,vj), which are ex- 

pressed in terms of the rate constants of the process 

{vi, v j} -~  {vi + ni, vj ~ ns} , ni = i, 2 . . . .  ( 1 . 3 )  

by t h e  f o r m u l a s  [10] 
j) X E 

= n iV~i,vi-~c (1.4) n i , n j >  1 n i 'nJ  l 3 Y v i , v i - - n i .  

With respect to the Boltzmann population-density balance equations, from which they were ob- 
tained [i0] for the weak-interaction conditionn i < vi, Eqs. (1.1)-(1.4) are approximate in the 
general case with respect to n i and exact in the single-quantum case (n i = 1 and i = i, 2). 

The last property of these equations and the absence of the limitation h~i)/kT ~ i [ii, 12] 

makes the application of Eqs. (i.i) preferable in comparison to the corresponding equations 
of classical (continuum) diffusion [13], which are the limiting case of Eqs. (i.I) for 

I n  t h e  s y s t e m  o f  h a r m o n i c  o s c i l l a t o r s  c o r r e s p o n d i n g  t o  Eqs.  ( 1 . 1 ) ,  ( 1 . 2 ) ,  and ( 1 . 4 ) ,  
the equations for the average energies E i (macroscopic description) have the form [i0] 

5=i n i , n j  ) 

t, 2. ( 1 . 5 )  

For ni, nj > i, they are approximate in the sense of that the diffusion Eqs. (i.i) are ap- 
proximate. The single-quantum exchange processes (i.i) are described exactly. 

Below we present the results of a numerical solution of Eqs. (i.i) and (1.5) (transient 
isothermal problem) for a binary mixture of anharmonic oscillators with greatly differing 
fundamental frequencies. As an example to illustrate the results, we chose systems with 
fundamental frequency ratios W = 0.73, 1.47, and 1.9, which correspond to the mixtures CO + 
02, HCI + H2, and CO (or N2) + HF. As initial conditions we used the Boltzmann distribu- 
tion with a temperature To; 

D Yv) ( 1 . 6 )  = c e x p ( - -  

and a strongly inverse distribution of the form 

xv(0 ) = cexp [--(g~ - -  ym)2/2p2], ( 1 . 7 )  

where m i s  t h e  number o f  t h e  l e v e l  wh ich  c o r r e s p o n d s  t o  t h e  maximum o f  t h e  d i s t r i b u t i o n ;  
t h e  c a r e  t h e  n o r m a l i z i n g  c o n s t a n t s ;  g y v e r / D =  (2v]N)(t--v/2N) i s  t h e  d e g r e e  o f  e x c i t a t i o n  
o f  t h e  o s c i l l a t o r  w i t h  t h e  v i b r a t i o n a l  s t a t e  v ;  E v i s  t h e  e n e r g y  o f  t h e  o s c i l l a t o r  w i t h  t h e  
v i b r a t i o n a l  s t a t e  v ;  D i s  t h e  d i s s o c i a t i o n  e n e r g y ;  and N i s  t h e  t o t a l  number ~f  t h e  o s c i l -  
l a t o r  l e v e l s .  

2.  C h a r a c t e r i s t i c  Times and t h e  R o l e  o f  V a r i o u s  P r o c e s s e s .  N u m e r i c a l  S o l u t i o n  Method.  
I n  c a l c u l a t i n g  t h e  v i b r a t i o n a l  r e l a x a t i o n  p r o c e s s  in  a b i n a r y  m i x t u r e  o f  quantum anha rmon ic  
o s c i l l a t o r s  o f  t y p e s  i and j ,  we w i l l  r e p r e s e n t  t h e  p r o b a b i l i s t i c  p r o c e s s e s  o f  e x c h a n g i n g  
v i b r a t i o n a l  e n e r g i e s  ( r a t e  c o n s t a n t  p r o c e s s e s )  Q~(i,]) by f u n c t i o n s  which  c o r r e s p o n d  t o  
f i r s t - o r d e r  " f o r c e d  o s c i l l a t o r "  e x c i t a t i o n  f u n c t i o n s  w i t h  a l i n e a r  e x p a n s i o n  o f  t h e  i n t e r a c -  
t i o n  p o t e n t i a l  in  t h e  v i b r a t i o n a l  c o o r d i n a t e s  r and r '  [ 1 2 ] :  
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where  r and r s a r e  m a t r i x  e l e m e n t s  o f  t h e  t r a j e c t o r i e s  o f  u n p e r t u r b e d  v i b r a t i o n a l  m o t i o n  
of the k-~th and ~-th oscillators, respectively; ,W=o/o/O~o; ~(oiJ)=~:~J)r is the adiabatic 

parameter (x(~ j) is the characteristic interaction time for colliding oscillators); and the 
function ~(x) is defined by the known relationship 

oo 

0 

[ 8 1/~-~xV/'exp(--3x2/a), x > > l ,  

A l t h o u g h  t h e  f u n c t i o n  ( 2 . 1 )  i s  o b t a i n e d  as  t h e  r e s u l t  o f  s o l v i n g  a l i n e a r  ( c o t l i n e a r )  dy-  
namic  p r o b l e m  by u s i n g  an e x p o n e n t i a l  r e p u l s i v e  p o t e n t i a l ,  i t  can  be c o n s i d e r e d  u n i v e r s a l  
f o r  t h e  p u r p o s e  o f  a s e r i e s  o f  c o l l i d i n g  p a i r s ,  b e c a u s e  t h e  s e l e c t i o n  o f  t h e  p a r a m e t e r s  

]), �9 Q10(t, ]) and can be approximated satisfactorily by the effect of rotation and 

long-range attraction in the vibrational energy exchange process [14, 15]. 

Besides the transition probabilities between the lower states P10(i, j) and Qi0~ 

the basic parameters of the problem are the ratio W of the fundamental frequencies and the 

adiabatic collision parameter l ~J). In the general case, the characteristic times Yi for the 
VT, VV, and VV' exchange processes (including the multiquantum processes) can be both close 
to each other and far apart, in terms of these parameters. Here, as a rule, the most rapid 
processes are the single-quantum VV processes, which form a triple distribution in each of 
the comDonents at lower levels: 

= ( _  ( 2 . 2 )  

AA (I I) for single-quantum Therefore, in a numerical solution, the characteristic time ~vv , 
~f exchange at the lower levels in one of the components (A, for example) is chosen as the 
time scale for the numerical solution of the problem. In this scale, accordng to (1.1)-(1.4) 
and (2.1), the rate of change of the relative population density Xvi due to the q-th relaxa- 

tion channel is chosen proportional to the quantity 

~vv(Li)  (D ~J ~ W c%i+ni'U (2.3) 
~J ~J ('m ~j) o)o~ %j " 

It also depends on the population densities Xvi and Xvj and their gradients. Here %~J(ni, n~)N 
[ ] O,nj --I [Qn~,o(i,y)J is the characteristic time of the q-th relaxation channel (of the vibrational 

process of transferring n i quanta of oscillation type i to nj quanta of oscillation type j). 

Distributions of the type (2.2), with a constant Ci, which do not depend on the level 
number, and which are due to a single-quantum VV exchange within each of the components, are 

AA <l- established on a time scale ~i (I, i) and are completed after a time T=tkcvv(1,1),_ ~02 TVV 

This follows from special calculations which consider only single-quantum W exchange (the 
rate constants of other possible processes are set to zero). In these calculations, the 
quantities ~vi(~) for the lower levels (Yv < 0.25) are determined from (2.2) by the rela- 

tionship ~v~ = [In(x~/Xo 0 q-gvi/kT]/vi. For ~ > i0 ~, they do not depend on the level number v i. 

Under actual conditions, a fast single-quantum VV exchange process (n i = nj = i) oc- 
curs in a background W (hi, nj > i), VV' (hi, nj > i), and (as a rule, single-quantum) VT 
exchange processes of a slower or similar rate. In particular, the slower VV' ( i- nj -> I) 
exchanges (e.g. for a CO + O: mixture with W = 0.73), of which in this case (A - -riCO and B = 
O~) the main process is a single-quantum one (n A = n B = I), there is a "mixing" of the vi- 
brational quanta. As a result, in times ~ > i0 ", the distribution (2.2) with C A = C B is 
established at the lower levels. This can be seen from Fig. I, which shows the function 
6vi(~) (solid curves) for complete calculation (including all processes) of the actual case 

of relaxation in a mixture A = CO and B = 2 (~A = 0.i and ~B = 0.9), which corresponds ap- 
proximately to fast cooling (T -~ 500 K) of Oa mixture of heated molecular oxygen (T O -- 2500 
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K) and carbon monoxide with an inverse initial distribution (1.7) (m = 12 and p = 0.07), 
which is formed for example, as a result of a chemical reaction or of optical excitation. 

As noted previously, the characteristic times for various processes can differ strongly. 
Namely such a situation is characteristic for the example in Fig. 1 (CO + 02, T = 500 K). 

sB ( t A )  - -  4 .  iO ~, AA(I,I) are as follows: Zvv(l,!) 0.7, i~ (ni, nj) on a scale of ~vv The quantities Xq -- ~vv' 

BB 105); The dotted curves show the average vibrational AA AB BA 7.10 4 , ~VT-- . . .  X V T - - t 0  7, XVT- -2" t0L  T V T - -  
e n e r g y  ( a s  a f r a c t i o n  o f  t h e  d i s s o c i a t i o n  e n e r g y )  Ei=~_JYv~xvi  f o r  two v a r i a n t s  o f  t h e  c a l c u -  

vi 

l a t i o n :  1)  c o n s i d e r s  W (nA, n B ~ 1) and  W '  (nA,  n B ~ 1) e x c h a n g e  ( w i t h o u t  c o n s i d e r i n g  VT 
e x c h a n g e  p r o c e s s e s ) ,  and  2)  c o n s i d e r s  o n l y  VT e x c h a n g e  p r o c e s s e s .  From F i g .  1 i t  c an  be  
s e e n  t h a t  t h e  VV (nA, n B > 1) and  W '  (nA,  n B > 1)  p r o c e s s e s  o c c u r  a f t e r  a t i m e  T ~ 10 a 
and the VT process occurs after a time z ~ 10s-10 s for component A and T ~ 108 for component 
B. 

If it is necessary to account correctly for processes with different time scales, 
there is a basic difficulty in the calculation; that is, the calculations must be done such 
that (on one hand) they are sufficiently accurate to follow the fast processes and (on the 
other that) they can proceed to large times on a scale for establishing total equilibrium. 
This difficulty is overcome within the framework of the double-sweep (modified Gaussian elimina- 
tion) method by an approach whose essence is an alternation of a large time step (for the slow 
process) and a series of fine steps (for the fast process). Due to the extreme stability of 
the solution, a large error, which arises in the large time step, is decreased to an allowable 
value in the subsequent fine time steps of integration. The selection and sequence of steps 
in T is given at the beginning of the calculation, starting from the value ~J(ni, nj). 

3. Effect of Concentrations. In the general case, the mole fractions 7i are important 
parameters on which depends the effective relaxation rate of the components. Thus, in the 

CO + 02 system [16] for T _~ 1600 K (~ ~TVT~ 2.103 , A m  - TVT--TvT--BB'~ BA~65) and , T~ = T~'__ 3600 (ia 

Boltzmann distribution (1.6) in both components), a change in the concentration of com- 
ponent B = 02 from 0.01 to 0.5 decreases the effective relaxation time for the average 
energies by an order of magnitude. 

Figure 2 shows the average energies E A and E B as a function of �9 for A = CO, B = 02 , 
and T = 500 K [A has the initial distribution (1.7), m = 12, p = 0.07; B has the initial 
distribution (1.6), T~ ~ 500 K] for various concentrations: i) 7A = 0.i and 7B = 0.9; 2) 
YA = 0.01 and 7B = 0.99; and 3) 7A = 10-u and 7B = 0.9999. The character of the relaxation 
depends especially strongly on the concentration when even a small number of high-energy 
molecules are added. Thus, for relaxation of a relatively small addition (TA ~ i0-3, see 
curves 1 and 2) of high,energy CO molecules (for example, those formed in the reaction CS + 
O 2 + CO* + SO) in relatively cold molecular oxygen, initially (for times �9 ~ 102), the W' 
exchange process leads to the excitation of 02, which in turn leads to a slowing of the CO 
relaxation in the subsequent (T > i03) near-equilibrium stage. Thus, in the example illu- 
strated in Fig. 2 for times �9 ~ 104, the system goes into a very slowly relaxing quasista- 
tionary state (after time T > 10s). In this case, for concentrations 7A ~ 10-4, the effect 
of excited additions of A on the vibrational state of gas B can be neglected; that is, the 
model of a small addition of nonequilibrium molecules into a Boltzmann thermostat [12, 17] 
is correct. 
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4. Effect of Multiquantum Exchange Processes. According to (2.3), the maximum of one 
or another VV (VV') exchange process can mainly be expected in the excitation energy ranges 
which satisfy the relationship 

~+ni/~oi -- W~j_~j,~/~ = 0, (4.1) 

under conditions of large values of the corresponding quantities Xv.. Equation (4.1) de- 
termines the level numbers v i and vj for resonance processes of theltype (1.3). According 
to (4ol), the largest effect of the multiquantum (mainly two-quantum) W' exchange processes 
should be expected for W z 2• and for W z (1.5)• in those cases, where there is signifi- 
cant excitation of the component with the smaller vibrational quantum. Thus, in a mixture 
A = CO and B = O 2 (W = 0.73), the process of two-quantum exchange (n A = 1 and n B = 2) occurs 
almost at resonance for v A = 0-i and v b = 18-22, and in a mixture A = HCI and B = H 2 (W = 
1047), this is related to a VV' exchange process (n A = 2 and n B = i) for v B = 0-i and v A = 
1-3. Thus, the effect of mu!tiquantum exchange processes has different effects at different 
temperatures, concentrations, and initial conditions. Thus, in the previous case A = CO, 
B = 02 , T = 1600 K, and T~ = T~ = 3600 K [16], and also for cases 2 (YA = 10-2) and 3 (YA = 
10 -4 ) in Fig. 2, the multiquantum effect does not appear~ which agrees completely both with 
what was discussed previously and with conclusions [17] obtained in the classical (continuum) 
approximation for a small admixture of excited molecules in a Boltzmann thermostat. Actually, 
in these cases there is no excitation of component B with a smaller quantum [in the first 
case T ~ 1600 K due to intensive VT deactivation of component B) or it is relatively small 
(Fig. 2, curves 2 and 3) due to small YA" In the mixture A = CO and B = 02, the effect of 
multiquantum exchanges appears with increasing YA, due to a large excitation of component B 
in the relaxation process (for < > i0); however, it has a purely quantitative character, 
and does not make a qualitative change in the relaxation process as a whole (see [16] for 
details). 

A similar (quantitative) effect of the multiquantum VV' (and VV) exchange processes is 
illustrated in Fig. 3, which shows the function Ei(~) (curve 1 is E A and curve 2 is E B) for 
the mixture A = HC! and B = H 2 (N A = 28, N B = 18, and W = 1.47) under conditions of vibra- 
tional and translational (equilibrium) temperatures (T~ = T~ = 2500 K, T = 500 K, ~0 AA = 7.5, 
~AB ~ 20, ~BB ~ 12, YA = 0.05, and YB = 0.95), which correspond to conditions in a gas dy- 
namic laser (see [18] for example). From Fig. 3 it can be seen that the effect of multi- 
quantum VV' exchanges, which lead to an increase in EHC 1 (compare curve i), are small (in- 
significant initial excitations of components A and B, and intensive VT deactivation), and 
this effect is observed for relatively small times (~ = 103). * 

In the situation illustrated in Fig. 4 (A = CO, B = HF, and W = 1.9), multiquantum VV w 
exchanges completely determine the character of the relaxation of the mixture (compare 
curves 1 and 4.** In this case one of the components (A = CO) relaxes almost completely due 

*As applied to gas dynamic laser conditions, these are nozzles of small diameters with 
characteristic flow times ~g ~ 103-~V (i, i). 
**Curves 4 of Fig. 4 correspond to a calculation that only considers the single-quantum ex- 
change process (n A = n B = i). 

825 



E , , , 

1,0 "I0 ~ ~ r "~ 

Fig. 3 

i ". 
. . . . . . . .  4 , 

~0 ~0 e r 4 ~ I0 e 

Fig. 4 

A 

~0 10 2 10 4 

F i g .  5 

~4 

A ,I"~" 

! 

------ 2 

r 

~0 /03 

Fig. 6 

\ 

\ 

to a multiquantum exchange with the other component (B = HF), which in turn has an inverse 
effect on the relaxation process of component B, accelerating it in the initial stage (T 
l0 s ) and decelerating it in the near-equilibrium stage (T ~ 10s). 

5. Macroscopic Description of Vibrational Relaxation in a Binary Mixture of Diatomic 
Molecules. As noted previously, macroscopic descriptions of vibrational kinetics are widely 
used in kinetic calculations of multicomponent systems. These descriptions use equations 
for the average energies (or the average number of vibrational quanta of the components 
(vibrational modes), which are modeled by harmonic oscillators. Within the framework of the 
diffusional approximation, this is Eq. (1.5). Below we present several results of comparing 
the microscopic [Eqs. (i.i), (1.2), and (1.4)] and macroscopic [Eq. (1.5)] descriptions of 
the vibrational kinetics in a binary mixture of diatomic molecules. For a comparison char- 
acteristic, we use the magnitude of Si, the average number of vibrational quanta in the i-th 

component of the mixture. For anharmonic oscillators S~ =~u~xv~, as a result of solving Eqs. 

(i.i), but for harmonic oscillators S i ~ E i as a result of solving Eqs. (1.5). The corre- 
sponding functions Si(~) are shown in Figs. 4-6, where curves i correspond to the solution 
of Eqs. (i.i) and 2 to the solution of Eqs. (1.5). Overall, the correspondence of curves i 
and 2 can be described only as qualitative (Fig. 4: 90% CO + 10% HF, T~ = 3500 K, T9 = 3500 
K, and T = 500 K; Fig. 5: 1% CO + 99% 02, T~ K =)3500 K, T~ = 500 K, and T ~ 500 K; Fig. 6: 
5% HCI + 95% H2, T~ = T9 = 2500 K, and T = 500 �9 This correspondence can be improved and 
brought to an approximate quantitative agreement at specific stages or for the whole process 
by introducing into the calculation constant corrections ~) (i is the component, and q is 

the relaxation channel) to the rate constants (characteristic times) for processes which 
approximately consider the effect of anharmonicity (averaged over time). These calculations 

_(A) (B) = i0--3 Fig 5: are shown in Figs. 4-6 by curves 3 (Fig 4: ~ =  90, ~(B) 105, ~vV' 1.2, ~VV 

=(A) (B) 0.33" Fig. 6: ~ ~ = 9, =~ = (B) 1.4.104, ~(n) 3, (B), 0.05). VV' = 0,8, ~VV' ~ , 3, ~VV ~ ~VV' ~ ~VV 

However, a macroscopic parametric method of calculating anharmonicity as a whole is 
limited to either the simplest system compositions (for example a small admixture to a Boltz- 
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mann thermostat) or to systems with a relatively low vibrational excitation [Si(0) J io0]. 

The author expresses deep thanks to V. M. Vasil'ev and Z. G. Vakina for performing the 
numerical calculations. 
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A GAS EJECTOR SYSTEM AND A DIFFERENTIAL EJECTOR 

V. A. Malanichev UDC 533 .697 .5  

i. Introduction. A theoretical investigation is conducted on the efficiency of using 
a system of gas ejectors with cylindrical mixing chambers and the limiting case of this sys- 
tem - the differential ejector. Mixing is examined for gases with equal stagnation tempera- 
tures and identical physical characteristics. The process of mixing gases in a differential 
ejector was first investigated in [i], where an error in the solution of the system of 
equations led to the loss of one condition of optimizing each stage of the differential ejec- 
tor. 

Here this error is corrected and the solution to the problem of a differential ejector 
is presented. 

The transition from a single-stage ejector with a cylindrical mixing chamber to a sys- 
tem of sequential ejectors with cylindrical mixing chambers (Fig. i) can improve the char- 
acteristics of a single stage ejector. The improvement is possible for two reasons. First, 
the differential mixing process can prolong the formation of the critical regime [1-3], 
which leads to a more efficient operation of the ejector. Second, differentiation increases 
the number of variable parameters in the ejector design, which can improve the efficiency 
of the mixing process. Here we investigate the effect only of the last factor; that is, it 
is assumed that the critical regime does not prevent optimization of the mixing process in 
each of the ejectors of the system. This approach is correct, because the effect of forming 
the critical regime is practically uncoupled with the ejector design specifics [i]. 

2. Optimization Criteria for a SinKle-Stage Ejector. We will examine mixing in an 
ejector with a cylindrical mixing chamber for two gases with identical physical character- 
istics c , ~, and stagnation temperature To. The total pressures are P0z and P02; the mass 

P 
flow rates are G I and G2, where P01 < P0z. The gases are totally mixed in the chamber and 
there are no losses. In this case, the laws of conservation of mass flows, momenta and en- 
ergies for a cylindrical mixing chamber are [4] 

I 
P~ ( Yl Y2 ); (2.1) 

q (~=) POlq (~t~ + Po, q (~2) 
z ( ~ )  = ~1z(~1) + ~z(~2), ( 2 . 2 )  

~ -- i - 2  \ ~I(• 
where z(%)=~+I/l, q(%)=I[I--~--~-7~ ) ,yI=GI/(GI~G~);?2 =GJ(G~+G2), and P0m is the 

total pressure of the gas mixture. From Eq. (2.2) it follows that for given values of the 

reduced velocities lz and 12 there are two values of the reduced velocity of the gas mixture 
Im" One of these corresponds to the subsonic velocity of the gas mixture (Im = Ams < i) and 

vff/ll/, , i i . . i  

Fig. i 
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